Storage-centric Wireless Sensor Networks for Smart Buildings

Baobing Wang

Department of Electrical and Computer Engineering
Institute for Systems Research
University of Maryland, College Park
briankw@umd.edu

IPSN 2013, Philadelphia, PA

April 7, 2013

Joint work with Prof. John S. Baras and Dr. Shah-An Yang
Motivation

- Buildings consume over 40% of total energy in the EU and US.
 - Main: HVAC (heating, ventilation, and air conditioning), lighting
 - Electric plug-loads: nearly 30% in commercial buildings
- Wireless Sensor Networks are critical for energy-efficient buildings.
 - Collect real-time data for smart HVAC, and lighting
 - Collect historical data for energy usage pattern analysis
- Difficult to design efficient and reliable WSNs for Smart Buildings.
 - Collaboration across multiple engineering domains
 - Complex cyber-physical interactions
 - Component reusability
 - Massive data collection and processing

How can we make the job easier for systems engineers?
Motivation

- Buildings consume over 40% of total energy in the EU and US.
 - Main: HVAC (heating, ventilation, and air conditioning), lighting
 - Electric plug-loads: nearly 30% in commercial buildings
- Wireless Sensor Networks are critical for energy-efficient buildings.
 - Collect real-time data for smart HVAC, and lighting
 - Collect historical data for energy usage pattern analysis
- Difficult to design efficient and reliable WSNs for Smart Buildings.
 - Collaboration across multiple engineering domains
 - Complex cyber-physical interactions
 - Component reusability
 - Massive data collection and processing

How can we make the job easier for systems engineers?
Motivation

- Buildings consume over 40% of total energy in the EU and US.
 - Main: HVAC (heating, ventilation, and air conditioning), lighting
 - Electric plug-loads: nearly 30% in commercial buildings
- Wireless Sensor Networks are critical for energy-efficient buildings.
 - Collect real-time data for smart HVAC, and lighting
 - Collect historical data for energy usage pattern analysis
- Difficult to design efficient and reliable WSNs for Smart Buildings.
 - Collaboration across multiple engineering domains
 - Complex cyber-physical interactions
 - Component reusability
 - Massive data collection and processing

How can we make the job easier for systems engineers?
Motivation

- Buildings consume over 40% of total energy in the EU and US.
 - Main: HVAC (heating, ventilation, and air conditioning), lighting
 - Electric plug-loads: nearly 30% in commercial buildings
- Wireless Sensor Networks are critical for energy-efficient buildings.
 - Collect real-time data for smart HVAC, and lighting
 - Collect historical data for energy usage pattern analysis
- Difficult to design efficient and reliable WSNs for Smart Buildings.
 - Collaboration across multiple engineering domains
 - Complex cyber-physical interactions
 - Component reusability
 - Massive data collection and processing

How can we make the job easier for systems engineers?
Q1: How to develop an integrated framework for the design and evaluation across multiple engineering domains?
 - WSNDesign: Model-based Systems Design Framework
 - Model libraries and integration
 - Theoretical performance estimation
 - Automatic code generation and integrated simulation
 - Reduce the complexity of system analysis

Q2: How to store and retrieve large amount of sensor readings efficiently?
 - Flash-based Data Storage and Retrieval
 - Node-level energy-efficient data storage system
 - Distributed database system supporting ϵ-approximate querying
Q1: How to develop an integrated framework for the design and evaluation across multiple engineering domains?

- **WSNDesign**: Model-based Systems Design Framework
 - Model libraries and integration
 - Theoretical performance estimation
 - Automatic code generation and integrated simulation
 - Reduce the complexity of system analysis

Q2: How to store and retrieve large amount of sensor readings efficiently?

- **Flash-based Data Storage and Retrieval**
 - Node-level energy-efficient data storage system
 - Distributed database system supporting ϵ-approximate querying
Q1: How to develop an integrated framework for the design and evaluation across multiple engineering domains?

- **WSNDesign:** Model-based Systems Design Framework
 - Model libraries and integration
 - Theoretical performance estimation
 - Automatic code generation and integrated simulation
 - Reduce the complexity of system analysis

Q2: How to store and retrieve large amount of sensor readings efficiently?

- **Flash-based Data Storage and Retrieval**
 - Node-level energy-efficient data storage system
 - Distributed database system supporting ϵ-approximate querying
Contributions

Q1: How to develop an integrated framework for the design and evaluation across multiple engineering domains?

- **WSNDesign: Model-based Systems Design Framework**
 - Model libraries and integration
 - Theoretical performance estimation
 - Automatic code generation and integrated simulation
 - Reduce the complexity of system analysis

Q2: How to store and retrieve large amount of sensor readings efficiently?

- **Flash-based Data Storage and Retrieval**
 - Node-level energy-efficient data storage system
 - Distributed database system supporting ϵ-approximate querying
WSNDesign Overview: Model Libraries

Applications
(System Services)
(Network Models)
(Physical Models)
(Cyber System Models)

Wireless Sensor Networks
(System Models)

Computation/Algorithms, Data Presentation, Communication Protocols

Applications (Requirements)

System Services (Information-oriented)

Service Models (Distributed Data Store and Retrieval)

Network Models (Communication and Management)

Physical Systems (Functions and Resource)

Physical Models (Functions and Performance)

Environment & BECS

Cyber System Models

Mapping

Figure: Hierarchy of System Models
WSNDesign Overview: Design Flow

Figure: Integrated Design Environment
Develop model libraries using SysML, Modelica and Simulink

Model Wireless Sensor Networks
- Physical platforms: CPU, sensor, RF transceiver, and battery
- MAC layer protocols: Low Power Listener, CSMA/CA Channel Access, CSMA/CA Sender, MAC Controller, Slot Manager, Queue Manager, TDMA Sender, Receiver ...
- Wireless channels: radio propagation models, channel fading models, and bit error rates

Model Cyber Systems
- Phenomenon: interface between the event-triggered domain and continuous-time domain
- Environment: propagation of phenomenon signals
- Control logic

Case study: building thermal control system
Develop model libraries using SysML, Modelica and Simulink

Model Wireless Sensor Networks

- Physical platforms: CPU, sensor, RF transceiver, and battery
- MAC layer protocols: Low Power Listener, CSMA/CA Channel Access, CSMA/CA Sender, MAC Controller, Slot Manager, Queue Manager, TDMA Sender, Receiver ...
- Wireless channels: radio propagation models, channel fading models, and bit error rates

Model Cyber Systems

- Phenomenon: interface between the event-triggered domain and continuous-time domain
- Environment: propagation of phenomenon signals
- Control logic

Case study: building thermal control system
Develop model libraries using SysML, Modelica and Simulink

- Model Wireless Sensor Networks
 - Physical platforms: CPU, sensor, RF transceiver, and battery
 - MAC layer protocols: Low Power Listener, CSMA/CA Channel Access, CSMA/CA Sender, MAC Controller, Slot Manager, Queue Manager, TDMA Sender, Receiver ...
 - Wireless channels: radio propagation models, channel fading models, and bit error rates

- Model Cyber Systems
 - Phenomenon: interface between the event-triggered domain and continuous-time domain
 - Environment: propagation of phenomenon signals
 - Control logic

- Case study: building thermal control system
Develop model libraries using SysML, Modelica and Simulink

Model Wireless Sensor Networks
- Physical platforms: CPU, sensor, RF transceiver, and battery
- MAC layer protocols: Low Power Listener, CSMA/CA Channel Access, CSMA/CA Sender, MAC Controller, Slot Manager, Queue Manager, TDMA Sender, Receiver ...
- Wireless channels: radio propagation models, channel fading models, and bit error rates

Model Cyber Systems
- Phenomenon: interface between the event-triggered domain and continuous-time domain
- Environment: propagation of phenomenon signals
- Control logic

Case study: building thermal control system
Complexity of system analysis

- Exponential exploration space: D^N
- Overall system = a series of local analysis + composition rules
- Reduced complexity: $\sum_{i=1}^{k} D^{n_i}$

Drawbacks of existing work

- Ad-hoc partitioning
- Rely upon general rules of thumb
- Rely upon the expertise of systems engineers

Our objective

- Visualize and quantitate the complexity of system analysis
- Help system engineers understand the impact of their decisions
- Give hints to system engineers to improve their designs
Complexity of system analysis

- Exponential exploration space: D^N
- Overall system = a series of local analysis + composition rules
- Reduced complexity: $\sum_{i=1}^{k} D^{n_i}$

Drawbacks of existing work

- Ad-hoc partitioning
- Rely upon general rules of thumb
- Rely upon the expertise of systems engineers

Our objective

- Visualize and quantitate the complexity of system analysis
- Help system engineers understand the impact of their decisions
- Give hints to system engineers to improve their designs
 Complexity of system analysis

- Exponential exploration space: D^N
- Overall system = a series of local analysis + composition rules
- Reduced complexity: $\sum_{i=1}^{k} D^{n_i}$

 Drawbacks of existing work

- Ad-hoc partitioning
- Rely upon general rules of thumb
- Rely upon the expertise of systems engineers

 Our objective

- Visualize and quantitate the complexity of system analysis
- Help system engineers understand the impact of their decisions
- Give hints to system engineers to improve their designs
Figure: Interactive Tool (GUI)
WSNDesign: Future Work

- **Model Library Development**
 - Transform and import TinyOS libraries: SysML-TinyOS profile
 - Integrate SysML-Modelica profile with IBM Rational Rhapsody
 - Enrich the Physical Model Library

- **Code Generation and Simulation Integration**
 - Generate TinyOS configuration scripts
 - Generate Modelica wrapper components
 - Synchronize the IBM Rhapsody simulator (SysML) with TOSSIM (TinyOS) and OpenModelica simulator (Modelica)

- **Complexity Reduction**
 - Parse hierarchical SysML Parametric Diagrams
 - Generate improved block diagrams from the analytical result
WSNDesign: Future Work

- **Model Library Development**
 - Transform and import TinyOS libraries: SysML-TinyOS profile
 - Integrate SysML-Modelica profile with IBM Rational Rhapsody
 - Enrich the Physical Model Library

- **Code Generation and Simulation Integration**
 - Generate TinyOS configuration scripts
 - Generate Modelica wrapper components
 - Synchronize the IBM Rhapsody simulator (SysML) with TOSSIM (TinyOS) and OpenModelica simulator (Modelica)

- **Complexity Reduction**
 - Parse hierarchical SysML Parametric Diagrams
 - Generate improved block diagrams from the analytical result
WSNDesign: Future Work

- **Model Library Development**
 - Transform and import TinyOS libraries: SysML-TinyOS profile
 - Integrate SysML-Modelica profile with IBM Rational Rhapsody
 - Enrich the Physical Model Library

- **Code Generation and Simulation Integration**
 - Generate TinyOS configuration scripts
 - Generate Modelica wrapper components
 - Synchronize the IBM Rhapsody simulator (SysML) with TOSSIM (TinyOS) and OpenModelica simulator (Modelica)

- **Complexity Reduction**
 - Parse hierarchical SysML Parametric Diagrams
 - Generate improved block diagrams from the analytical result
Flash-based Data Storage and Retrieval

System Models
- Application Models (Functionality and Performance Reqs.)
 - Tracking
 - Detection
 - Monitoring
 ... Application-specific

Service Models (Distributed Data Store and Retrieval)
- Query
- Naming
- Location
- Syn
 ... Mapping

Network Models (Communication and Management)
- MAC
- Routing
- Mobility
- Data
- Topology Control
- Power Control
 ... Mapping

Physical Models (Functions and Performance)
- Sensor
- Actuator
- Router
- Base Station
- Wireless Channel
 ... Mapping

Cyber System Models
- Phenomena
- HVAC
 ... Mapping

Modelica Building Library (Lawrence Berkeley Lab)

- Aggregated: average, peak for each hour
- Approximate: power usage pattern
- Not every reading is needed!
- Centralized data collection
- In-situ data storage ✓
- Flash memory: high capacity, energy efficient
Flash-based Data Storage and Retrieval

- **Aggregated**: average, peak for each hour
- **Approximate**: power usage pattern

Not every reading is needed!

- Centralized data collection
- In-situ data storage ✓
- Flash memory: high capacity, energy efficient
Flash-based Data Storage and Retrieval

- Aggregated: average, peak for each hour
- Approximate: power usage pattern

Not every reading is needed!

- Centralized data collection
- In-situ data storage
- Flash memory: high capacity, energy efficient
Flash-based Data Storage and Retrieval

- **Aggregated**: average, peak for each hour
- **Approximate**: power usage pattern

Not every reading is needed!

- **Centralized** data collection
- **In-situ** data storage ✓
- **Flash memory**: high capacity, energy efficient
Problem Formulation

- N motes, sampling once every τ seconds
 - $r_{id,t} = \langle id, t, key, v_2, \ldots, v_d \rangle$

- ϵ-Approximate Querying
 - Given a dataset Υ, retrieve $O \subseteq \Upsilon$ s.t. the approximate version $\tilde{\Upsilon}$ computed from O satisfies:

$$L_\infty(O, \Upsilon) \triangleq L_\infty(\tilde{\Upsilon}, \Upsilon) = \max_{id=1}^N \max_{t=t_1}^{t_2} \| (\tilde{r}_{id,t} - r_{id,t}) \times w \|_\infty \leq \epsilon$$

- Problem of ϵ-Approximate Querying
 - Error bound ϵ must be specified by users
 - What ϵ can lead to satisfactory results? \leftrightarrow Difficult to decide
 - ϵ is too tight: over-qualified result, energy waste
 - ϵ is too loose: re-issue the query, duplicated data retrieval
Problem Formulation

- \(N \) motes, sampling once every \(\tau \) seconds
 - \(r_{id,t} = \langle id, t, key, v_2, \ldots, v_d \rangle \)

- \(\epsilon \)-Approximate Querying
 - Given a dataset \(\Upsilon \), retrieve \(O \subseteq \Upsilon \) s.t. the approximate version \(\tilde{\Upsilon} \) computed from \(O \) satisfies:
 \[
 L_\infty(O, \Upsilon) \triangleq L_\infty(\tilde{\Upsilon}, \Upsilon) = \max_{id=1}^{N} \max_{t=t_1}^{t_2} \| (\tilde{r}_{id,t} - r_{id,t}) \times w \|_\infty \leq \epsilon
 \]

- Problem of \(\epsilon \)-Approximate Querying
 - Error bound \(\epsilon \) must be specified by users
 - What \(\epsilon \) can lead to satisfactory results? \(\leftarrow \) Difficult to decide
 - \(\epsilon \) is too tight: over-qualified result, energy waste
 - \(\epsilon \) is too loose: re-issue the query, duplicated data retrieval
Problem Formulation

- N motes, sampling once every τ seconds
 - $r_{id,t} = \langle id, t, key, v_2, \ldots, v_d \rangle$

- ϵ-Approximate Querying
 - Given a dataset Υ, retrieve $O \subseteq \Upsilon$ s.t. the approximate version $\tilde{\Upsilon}$ computed from O satisfies:

 $$L_\infty(O, \Upsilon) \triangleq L_\infty(\tilde{\Upsilon}, \Upsilon) = \max_{id=1}^N \max_{t=t_1}^{t_2} \| (\tilde{r}_{id,t} - r_{id,t}) \times w \|_\infty \leq \epsilon$$

- Problem of ϵ-Approximate Querying
 - Error bound ϵ must be specified by users
 - What ϵ can lead to satisfactory results? ← Difficult to decide
 - ϵ is too tight: over-qualified result, energy waste
 - ϵ is too loose: re-issue the query, duplicated data retrieval
Problem Formulation

Incremental ϵ-Approximate Querying

- $Q = \{\rho_1, \rho_2, \ldots, \rho_\lambda\}$, where $\rho_i = \{[t_{i,1}, t_{i,2}], [k_1, k_2], \epsilon_i\}$
- $0 \leq \epsilon_{i+1} < \epsilon_i$ and $[t_{i+1,1}, t_{i+1,2}] \subseteq [t_{i,1}, t_{i,2}]$
- Each ρ_i retrieves $O_i \subseteq \Psi_i = \{r_{id,t} \mid (t_{i,1} \leq t \leq t_{i,2}) \land (k_1 \leq \text{key} \leq k_2)\} \subseteq \Upsilon$
- Incremental: $\Delta_i = O_i \setminus O_{i-1}$ and $\Delta_i \cap \Delta_j = \emptyset$ for all $i \neq j$
- Correct: O_i can be constructed from $\Delta_1, \ldots, \Delta_i$, and $L_\infty(O_i, \Psi_i) \leq \epsilon_i$

- Q2.1: How to get Ψ_i efficiently? \Rightarrow HybridStore
- Q2.2: How to compute Δ_i efficiently? \Rightarrow HybridDB
Problem Formulation

Incremental ϵ-Approximate Querying

- $Q = \{\rho_1, \rho_2, \ldots, \rho_\lambda\}$, where $\rho_i = \{[t_{i,1}, t_{i,2}], [k_1, k_2], \epsilon_i\}$
- $0 \leq \epsilon_{i+1} < \epsilon_i$ and $[t_{i+1,1}, t_{i+1,2}] \subseteq [t_{i,1}, t_{i,2}]$
- Each ρ_i retrieves

 $O_i \subseteq \Psi_i = \{r_{id,t} \mid (t_{i,1} \leq t \leq t_{i,2}) \land (k_1 \leq \text{key} \leq k_2)\} \subseteq \Upsilon$

- Incremental: $\Delta_i = O_i \setminus O_{i-1}$ and $\Delta_i \cap \Delta_j = \emptyset$ for all $i \neq j$

- Correct: O_i can be constructed from $\Delta_1, \ldots, \Delta_i$, and $L_\infty(O_i, \Psi_i) \leq \epsilon_i$

Q2.1: How to get Ψ_i efficiently? \implies HybridStore

Q2.2: How to compute Δ_i efficiently? \implies HybridDB
Problem Formulation

- **Incremental ϵ-Approximate Querying**
 - $Q = \{\rho_1, \rho_2, \ldots, \rho_\lambda\}$, where $\rho_i = \{[t_{i,1}, t_{i,2}], [k_1, k_2], \epsilon_i\}$
 - $0 \leq \epsilon_{i+1} < \epsilon_i$ and $[t_{i+1,1}, t_{i+1,2}] \subseteq [t_{i,1}, t_{i,2}]$
 - Each ρ_i retrieves
 $O_i \subseteq \Psi_i = \{r_{id,t} \mid (t_{i,1} \leq t \leq t_{i,2}) \land (k_1 \leq key \leq k_2)\} \subseteq \Upsilon$
 - Incremental: $\Delta_i = O_i \setminus O_{i-1}$ and $\Delta_i \cap \Delta_j = \emptyset$ for all $i \neq j$
 - Correct: O_i can be constructed from $\Delta_1, \ldots, \Delta_i$, and $L_\infty(O_i, \Psi_i) \leq \epsilon_i$

- Q2.1: How to get Ψ_i efficiently? \Rightarrow HybridStore
- Q2.2: How to compute Δ_i efficiently? \Rightarrow HybridDB
Problem Formulation

Incremental ϵ-Approximate Querying

- $Q = \{\rho_1, \rho_2, \ldots, \rho_\lambda\}$, where $\rho_i = \{[t_{i,1}, t_{i,2}], [k_1, k_2], \epsilon_i\}$
- $0 \leq \epsilon_{i+1} < \epsilon_i$ and $[t_{i+1,1}, t_{i+1,2}] \subseteq [t_{i,1}, t_{i,2}]$
- Each ρ_i retrieves $O_i \subseteq \Psi_i = \{r_{id, t} \mid (t_{i,1} \leq t \leq t_{i,2}) \land (k_1 \leq key \leq k_2)\} \subseteq \mathcal{Y}$
- **Incremental**: $\Delta_i = O_i \setminus O_{i-1}$ and $\Delta_i \cap \Delta_j = \emptyset$ for all $i \neq j$
- **Correct**: O_i can be constructed from $\Delta_1, \ldots, \Delta_i$, and $L_\infty(O_i, \Psi_i) \leq \epsilon_i$

- **Q2.1**: How to get Ψ_i efficiently? \Rightarrow HybridStore
- **Q2.2**: How to compute Δ_i efficiently? \Rightarrow HybridDB
Problem Formulation

- **Incremental ε-Approximate Querying**
 - $Q = \{\rho_1, \rho_2, \ldots, \rho_\lambda\}$, where $\rho_i = \{[t_{i,1}, t_{i,2}], [k_1, k_2], \epsilon_i\}$
 - $0 \leq \epsilon_{i+1} < \epsilon_i$ and $[t_{i+1,1}, t_{i+1,2}] \subseteq [t_{i,1}, t_{i,2}]$
 - Each ρ_i retrieves
 - $O_i \subseteq \Psi_i = \{r_{id,t} | (t_{i,1} \leq t \leq t_{i,2}) \land (k_1 \leq \text{key} \leq k_2)\} \subseteq \Upsilon$
 - **Incremental**: $\Delta_i = O_i \setminus O_{i-1}$ and $\Delta_i \cap \Delta_j = \emptyset$ for all $i \neq j$
 - **Correct**: O_i can be constructed from $\Delta_1, \ldots, \Delta_i$, and $L_\infty(O_i, \Psi_i) \leq \epsilon_i$

- Q2.1: How to get Ψ_i efficiently? \Rightarrow HybridStore
- Q2.2: How to compute Δ_i efficiently? \Rightarrow HybridDB
Problem Formulation

- **Incremental ϵ-Approximate Querying**
 - $Q = \{\rho_1, \rho_2, \ldots, \rho_\lambda\}$, where $\rho_i = \{[t_{i,1}, t_{i,2}], [k_1, k_2], \epsilon_i\}$
 - $0 \leq \epsilon_{i+1} < \epsilon_i$ and $[t_{i+1,1}, t_{i+1,2}] \subseteq [t_{i,1}, t_{i,2}]$
 - Each ρ_i retrieves
 - $O_i \subseteq \Psi_i = \{r_{id,t} \mid (t_{i,1} \leq t \leq t_{i,2}) \land (k_1 \leq \text{key} \leq k_2)\} \subseteq \Upsilon$
 - Incremental: $\Delta_i = O_i \setminus O_{i-1}$ and $\Delta_i \cap \Delta_j = \emptyset$ for all $i \neq j$
 - Correct: O_i can be constructed from $\Delta_1, \ldots, \Delta_i$, and $L_\infty(O_i, \Psi_i) \leq \epsilon_i$

- **Q2.1:** How to get Ψ_i efficiently? \Rightarrow HybridStore
- **Q2.2:** How to compute Δ_i efficiently? \Rightarrow HybridDB
Problem Formulation

- **Incremental \(\epsilon \)-Approximate Querying**
 - \(Q = \{\rho_1, \rho_2, \ldots, \rho_\lambda\} \), where \(\rho_i = \{[t_{i,1}, t_{i,2}], [k_1, k_2], \epsilon_i\} \)
 - \(0 \leq \epsilon_{i+1} < \epsilon_i \) and \([t_{i+1,1}, t_{i+1,2}] \subseteq [t_{i,1}, t_{i,2}]\)
 - Each \(\rho_i \) retrieves
 \[
 O_i \subseteq \Psi_i = \{r_{id,t} \mid (t_{i,1} \leq t \leq t_{i,2}) \land (k_1 \leq key \leq k_2)\} \subseteq \Upsilon
 \]
 - Incremental: \(\Delta_i = O_i \setminus O_{i-1} \) and \(\Delta_i \cap \Delta_j = \emptyset \) for all \(i \neq j \)
 - Correct: \(O_i \) can be constructed from \(\Delta_1, \ldots, \Delta_i \), and \(L_\infty(O_i, \Psi_i) \leq \epsilon_i \)

- **Q2.1:** How to get \(\Psi_i \) efficiently? \(\Rightarrow \) HybridStore
- **Q2.2:** How to compute \(\Delta_i \) efficiently? \(\Rightarrow \) HybridDB
Problem Formulation

Incremental ε-Approximate Querying

- \(Q = \{\rho_1, \rho_2, \ldots, \rho_\lambda\} \), where \(\rho_i = \{[t_{i,1}, t_{i,2}], [k_1, k_2], \epsilon_i\} \)
- \(0 \leq \epsilon_{i+1} < \epsilon_i \) and \([t_{i+1,1}, t_{i+1,2}] \subseteq [t_{i,1}, t_{i,2}] \)
- Each \(\rho_i \) retrieves
 \[O_i \subseteq \Psi_i = \{r_{id,t} \mid (t_{i,1} \leq t \leq t_{i,2}) \land (k_1 \leq key \leq k_2)\} \subseteq \Upsilon \]
- **Incremental:** \(\Delta_i = O_i \setminus O_{i-1} \) and \(\Delta_i \cap \Delta_j = \emptyset \) for all \(i \neq j \)
- **Correct:** \(O_i \) can be constructed from \(\Delta_1, \ldots, \Delta_i \), and \(L_\infty(O_i, \Psi_i) \leq \epsilon_i \)

Q2.1: How to get \(\Psi_i \) efficiently? \(\Rightarrow \) HybridStore

Q2.2: How to compute \(\Delta_i \) efficiently? \(\Rightarrow \) HybridDB
Problem Formulation

- **Incremental ϵ-Approximate Querying**
 - $Q = \{\rho_1, \rho_2, \ldots, \rho_\lambda\}$, where $\rho_i = \{[t_{i,1}, t_{i,2}], [k_1, k_2], \epsilon_i\}$
 - $0 \leq \epsilon_{i+1} < \epsilon_i$ and $[t_{i+1,1}, t_{i+1,2}] \subseteq [t_{i,1}, t_{i,2}]$
 - Each ρ_i retrieves
 $$O_i \subseteq \Psi_i = \{r_{id,t} \mid (t_{i,1} \leq t \leq t_{i,2}) \land (k_1 \leq \text{key} \leq k_2)\} \subseteq \Upsilon$$
 - **Incremental**: $\Delta_i = O_i \setminus O_{i-1}$ and $\Delta_i \cap \Delta_j = \emptyset$ for all $i \neq j$
 - **Correct**: O_i can be constructed from $\Delta_1, \ldots, \Delta_i$, and $L_\infty(O_i, \Psi_i) \leq \epsilon_i$

- Q2.1: How to get Ψ_i efficiently? \implies HybridStore
- Q2.2: How to compute Δ_i efficiently? \implies HybridDB
HybridStore Interface [EWSN ’13]

- insert(float key, void* record, uint8_t length)
- select(uint32_t t₁, uint32_t t₂, float k₁, float k₂)

HybridStore Features

- All NAND pages are fully occupied and written purely sequentially
- In-place updates and out-of-place writes are completely avoided
- Process typical joint queries efficiently, even on large-scale datasets
- Data aging without overhead, and simple failure recovery mechanism
HybridDB: Incremental ϵ-Approximate Querying

HybridDB Interface [TOSN ’13]

- `approxQuery(uint32_t t_{1,1}, uint32_t t_{1,2}, float k_1, float k_2, float \epsilon_1)`
- `approxUpdate(uint8_t queryID, uint32_t t_{i,1}, uint32_t t_{i,2}, float \epsilon_i)`

HybridDB Features

- Support refinement and zoom-in sub-queries
- Retrieve an approximate dataset with arbitrary L_∞ error bound
- Balance trade-offs
 - Energy consumption: sensors \leftrightarrow proxy
 - Response time: current sub-query \leftrightarrow following sub-queries
HybridDB: Incremental ϵ-Approximate Querying

HybridDB Interface [TOSN '13]

- approxQuery(uint32_t $t_{1,1}$, uint32_t $t_{1,2}$, float k_1, float k_2, float ϵ_1)
- approxUpdate(uint8_t queryID, uint32_t $t_{i,1}$, uint32_t $t_{i,2}$, float ϵ_i)

HybridDB Features

- Support refinement and zoom-in sub-queries
- Retrieve an approximate dataset with arbitrary L_∞ error bound
- Balance trade-offs
 - Energy consumption: sensors \leftrightarrow proxy
 - Response time: current sub-query \leftrightarrow following sub-queries
HybridDB: Testbed Results

- Sensor friendly: 22.5KB ROM, 3.76KB RAM
- Benefits: significant energy savings, much better user experience

![Diagram of sensor placement and latency graph]

Baobing Wang (UMD) WSNs for Smart Buildings April 7, 2013
HybridDB: Future Work

Import into WSNDesign using SysML-TinyOS profile
Conclusion

- Proposed a model-based design framework for the design of WSNs in the context of Smart Buildings \implies **System-level Design**
 - Hierarchy of model libraries, model transformation and integration
 - Composition rules, and system performance estimation
 - Code generation, and multi-simulator integration
 - Reduction of system analysis complexity

- Proposed and implemented an abstraction for *in-situ* data storage and retrieval \implies **System Implementation**
 - Efficient light-weight data storage system
 - Distributed incremental ϵ-approximate querying